
Step: Principal Component Analysis (PCA)
step_pca.RdRun PCA using glystats::gly_pca() and plot it with glyvis::plot_pca().
Loading plot for glycoproteomics data can be crowded with too many variables.
Ignore the resulting plot if it is not informative.
Arguments
- on
Name of the experiment to run PCA on. Can be "exp", "sig_exp", "trait_exp", "sig_trait_exp", "motif_exp", "sig_motif_exp".
- center
A logical indicating whether to center the data. Default is TRUE.
- scale
A logical indicating whether to scale the data. Default is TRUE.
- plot_width
Width of plots in inches. Default is 5.
- plot_height
Height of plots in inches. Default is 5.
- ...
Additional arguments passed to
prcomp().
Details
Data required:
exp(ifon = "exp"): The experiment to run PCA ontrait_exp(ifon = "trait_exp"): The trait experiment to run PCA onmotif_exp(ifon = "motif_exp"): The motif experiment to run PCA on
Tables generated (with suffixes):
pca_samples: A table containing the PCA scores for each samplepca_variables: A table containing the PCA loadings for each variablepca_eigenvalues: A table containing the PCA eigenvalues
Plots generated (with suffixes):
pca_scores: A PCA score plot colored by grouppca_loadings: A PCA loading plotpca_screeplot: A PCA screeplot