
Step: Significant Variables Boxplot
step_sig_boxplot.RdCreate boxplots for the most significant variables from DEA analysis using
glyvis::plot_boxplot(). The function selects the top n_top variables with
the lowest adjusted p-values from the DEA results and plots their expression
values grouped by sample groups.
Usage
step_sig_boxplot(
on = "sig_exp",
n_top = 25,
panel_width = 1.5,
panel_height = 1.2,
min_width = 5,
min_height = 3,
max_width = 14,
max_height = 12,
...
)Arguments
- on
Name of the experiment data in
ctx$datato plot. One of "sig_exp", "sig_trait_exp", "sig_motif_exp". Default is "sig_exp".- n_top
Number of top significant variables to plot. Must be between 1 and 25 (inclusive). Default is 25.
- panel_width
Width of each panel in inches. Default is 1.5.
- panel_height
Height of each panel in inches. Default is 1.2.
- min_width
Minimum plot width in inches. Default is 5.
- min_height
Minimum plot height in inches. Default is 3.
- max_width
Maximum plot width in inches. Default is 14.
- max_height
Maximum plot height in inches. Default is 12.
- ...
Additional arguments passed to
glyvis::plot_boxplot().
Details
This step requires a DEA step to be run first (e.g., step_dea_limma(),
step_dea_ttest(), step_dea_wilcox(), step_dea_anova(), or step_dea_kruskal()).
The number of variables is limited to a maximum of 25, as enforced by
glyvis::plot_boxplot().
Data required:
Depends on
onparameter:sig_exp(default): Significant experiment from DEAsig_trait_exp: Significant trait experiment from DTAsig_motif_exp: Significant motif experiment from DMA
Plots generated:
sig_boxplot: A boxplot of significant variables (ifon = "sig_exp")sig_trait_boxplot: A boxplot of significant traits (ifon = "sig_trait_exp")sig_motif_boxplot: A boxplot of significant motifs (ifon = "sig_motif_exp")
AI Prompt
This section is for AI in inquire_blueprint() only.
Include this step after DEA steps to visualize the significant variables.
This step is particularly useful for understanding the expression patterns of the most differentially expressed features across groups.
Examples
step_sig_boxplot()
#> <step "step_sig_boxplot()"> Significant variables boxplot of significant
#> variables
step_sig_boxplot(n_top = 12)
#> <step "step_sig_boxplot(n_top = 12)"> Significant variables boxplot of
#> significant variables
step_sig_boxplot(on = "sig_trait_exp")
#> <step "step_sig_boxplot(on = \"sig_trait_exp\")"> Significant variables boxplot
#> of significant traits